Python
- Type: Rig
- field
- Latitude: 31.6052000
- Longitude: 30.0423000
Using cProfile to Generate Profile Data
Run Your Script with cProfile: You can profile your Python script using the
cProfile
module from the command line. Here is an example:python -m cProfile -o oil_project.prof path/to/your/script.py arg1 arg2
This command will run your script and save the profiling data to a file named
oil_project.prof
.Profiling Within the Script: If you prefer to profile specific parts of your script, you can use
cProfile
within your code:import cProfile pr = cProfile.Profile() pr.enable() # Your main function or code here main_function() pr.disable() pr.dump_stats('oil_project.prof')
This will also generate a profile file named
oil_project.prof
.
Visualizing the Profile Data
Using SnakeViz: SnakeViz is a browser-based graphical viewer for
cProfile
output. You can install it using pip:pip install snakeviz
Then, you can visualize the profile data with:
snakeviz oil_project.prof
This will open an interactive web interface where you can explore the profiling data, including sunburst charts and detailed statistics tables.
Using pstats: If you prefer a text-based output, you can use the
pstats
module:import pstats p = pstats.Stats("oil_project.prof") p.sort_stats("cumulative").print_stats(30) # Print top 30 cumulative
This will print a table showing the top 30 functions by cumulative time.
Additional Profiling Tools
Line Profiler: For line-by-line profiling of specific functions, you can use the
line_profiler
tool. Install it using pip:pip install line_profiler
Decorate the functions you want to profile with
@profile
:from line_profiler import LineProfiler @profile def my_function(arg1, arg2): # Your function code here pass profiler = LineProfiler() profiler.add_function(my_function) profiler.run('my_function(arg1, arg2)') profiler.print_stats()
Alternatively, you can use
kernprof
to run the script:kernprof -l script_to_profile.py python -m line_profiler script_to_profile.lprof > line_profiler_out.txt
This will give you detailed line-by-line performance data.
Statistical Profiling
If you need to work around circular call graphs or require a different profiling approach, you can use statistical profiling tools like pyinstrument
. Here’s how you can use it:
PIPETASKCMD=`which your_script`
pyinstrument -r speedscope -o report.speedscope ${PIPETASKCMD} run ...
This will generate a file that can be visualized using web-based tools like Speedscope.
By combining these tools, you can gain a comprehensive understanding of the performance bottlenecks in your Python oil project.